목록앙상블 (1)
Note
앙상블 학습
앙상블 학습 : 여러 개의 분류기를 생성하고 그 예측을 결합함으로써 하나의 분류기만 사용했을 때 보다 정확한 최종 예측을 도출하는 학습 기법이다. ex) 한 명이 하나의 문제를 해결하기 위해 답변을 내놓는 것보다 여러 명이 모여 하나의 문제를 해결하기 위해 다양한 해결 방법을 제시하는 것이 한 명보다는 효율적이고 신뢰도가 높은 값을 얻을 수 있다. 1. 앙상블 학습 기법의 유형 (1) 보팅(Voting) (2) 배깅(Bagging) : 랜덤 포레스트(Random Forest) (3) 부스팅(Boosting) : 에이다 부스팅(Adaboosting), 그래디언트 부스팅 (Gradient Boosting), XGBoost, LightGBM 등. 분류나 회귀에서 GBM 부스팅 계열의 앙상블이 전반적으로 높은 ..
Machine Learning/Classification
2021. 5. 24. 16:19