Note
Numpy (38) 본문
728x90
How to replace all missing values with 0 in a numpy array?
# Input
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3])
iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)] = np.nan
# Solution
iris_2d[np.isnan(iris_2d)] = 0
iris_2d[:4]
# output
array([[ 5.1, 3.5, 1.4, 0. ],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2],
[ 4.6, 3.1, 1.5, 0.2]])
'Numpy' 카테고리의 다른 글
Numpy (40) (2) | 2022.09.03 |
---|---|
Numpy (39) (0) | 2022.08.31 |
Numpy (37) (0) | 2022.08.29 |
Numpy (36) (0) | 2022.08.28 |
Numpy (35) (0) | 2022.08.27 |
Comments