Note
Numpy (30) 본문
728x90
How to compute the softmax score?
# Input
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris = np.genfromtxt(url, delimiter=',', dtype='object')
sepallength = np.array([float(row[0]) for row in iris])
# Solution
def softmax(x):
"""Compute softmax values for each sets of scores in x.
https://stackoverflow.com/questions/34968722/how-to-implement-the-softmax-function-in-python"""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)
print(softmax(sepallength))
# output
[ 0.002 0.002 0.001 0.001 0.002 0.003 0.001 0.002 0.001 0.002
0.003 0.002 0.002 0.001 0.004 0.004 0.003 0.002 0.004 0.002
0.003 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.001
0.002 0.003 0.002 0.003 0.002 0.002 0.003 0.002 0.001 0.002
0.002 0.001 0.001 0.002 0.002 0.002 0.002 0.001 0.003 0.002
0.015 0.008 0.013 0.003 0.009 0.004 0.007 0.002 0.01 0.002
0.002 0.005 0.005 0.006 0.004 0.011 0.004 0.004 0.007 0.004
0.005 0.006 0.007 0.006 0.008 0.01 0.012 0.011 0.005 0.004
0.003 0.003 0.004 0.005 0.003 0.005 0.011 0.007 0.004 0.003
0.003 0.006 0.004 0.002 0.004 0.004 0.004 0.007 0.002 0.004
0.007 0.004 0.016 0.007 0.009 0.027 0.002 0.02 0.011 0.018
0.009 0.008 0.012 0.004 0.004 0.008 0.009 0.03 0.03 0.005
0.013 0.004 0.03 0.007 0.011 0.018 0.007 0.006 0.008 0.018
0.022 0.037 0.008 0.007 0.006 0.03 0.007 0.008 0.005 0.013
0.011 0.013 0.004 0.012 0.011 0.011 0.007 0.009 0.007 0.005]
'Numpy' 카테고리의 다른 글
Numpy (32) (0) | 2022.08.24 |
---|---|
Numpy (31) (0) | 2022.08.23 |
Numpy (29) (0) | 2022.08.21 |
Numpy (28) (0) | 2022.08.20 |
Numpy (27) (0) | 2022.08.19 |
Comments