Note
Numpy (30) 본문
How to compute the softmax score?
# Input
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
iris = np.genfromtxt(url, delimiter=',', dtype='object')
sepallength = np.array([float(row[0]) for row in iris])
# Solution
def softmax(x):
"""Compute softmax values for each sets of scores in x.
https://stackoverflow.com/questions/34968722/how-to-implement-the-softmax-function-in-python"""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)
print(softmax(sepallength))
# output
[ 0.002 0.002 0.001 0.001 0.002 0.003 0.001 0.002 0.001 0.002
0.003 0.002 0.002 0.001 0.004 0.004 0.003 0.002 0.004 0.002
0.003 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.001
0.002 0.003 0.002 0.003 0.002 0.002 0.003 0.002 0.001 0.002
0.002 0.001 0.001 0.002 0.002 0.002 0.002 0.001 0.003 0.002
0.015 0.008 0.013 0.003 0.009 0.004 0.007 0.002 0.01 0.002
0.002 0.005 0.005 0.006 0.004 0.011 0.004 0.004 0.007 0.004
0.005 0.006 0.007 0.006 0.008 0.01 0.012 0.011 0.005 0.004
0.003 0.003 0.004 0.005 0.003 0.005 0.011 0.007 0.004 0.003
0.003 0.006 0.004 0.002 0.004 0.004 0.004 0.007 0.002 0.004
0.007 0.004 0.016 0.007 0.009 0.027 0.002 0.02 0.011 0.018
0.009 0.008 0.012 0.004 0.004 0.008 0.009 0.03 0.03 0.005
0.013 0.004 0.03 0.007 0.011 0.018 0.007 0.006 0.008 0.018
0.022 0.037 0.008 0.007 0.006 0.03 0.007 0.008 0.005 0.013
0.011 0.013 0.004 0.012 0.011 0.011 0.007 0.009 0.007 0.005]
728x90
'Numpy' 카테고리의 다른 글
Numpy (32) (0) | 2022.08.24 |
---|---|
Numpy (31) (0) | 2022.08.23 |
Numpy (29) (0) | 2022.08.21 |
Numpy (28) (0) | 2022.08.20 |
Numpy (27) (0) | 2022.08.19 |
Comments